Minggu, 19 Oktober 2014

Tugas Fisika Dasar

CHAPTER I
PRELIMINARY

1.1  BACKGROUND
In this modern era technology becomes important. Technology can facilitate the work and shorten the actual distance of thousands of miles, for example by using the telephone. One important thing that supports the existence of technology is a means, such as media or wave energy.
Many electronic items that utilize the properties of waves, such as the nature of the wave can propagate in a vacuum used by humans to make the light bulb in the Bolam where space is a vacuum.
Many electronic devices around us who utilize the technology wave, but most of us do not fully know and understand. And we will discuss the use of sound waves and waves in everyday life more specifically in next chapter.

1.2  FORMULATION OF THE PROBLEM
1.      What is the mean of wave?
2.      What else are the kind of wave?
3.      How the properties of waves?
4.      How the use of waves in everyday life?

1.3  PURPOSE
1. To know the wave is.
2. To find all kinds of waves.
3. To know the properties of waves.
4. Able to examine the use of waves in everyday life.
CHAPTER II
DISCUSSION

2.1 Definition of the wave
The waves are vibrations that propagate, either through or not through the medium medium. There is a wave propagation requires a medium, such as a wave through the umbilical cord and some that do not require a medium, which means that the waves can propagate through a vacuum (vacuum), such as electrical magnetic waves can propagate in a vacuum. Wave propagation in the medium is not followed by the propagation medium, but the medium particles will vibrate. Mathematical formulation of the wave propagation can be derived by observation of a pulse. Judging from the provisions of the repetition of shapes, waves and periodic waves divided into non-periodic waves.
In everyday life many people think that the wave is propagating in the resonance or particle, it is slightly incorrect because the wave is propagating in the energy that belongs to the vibration. From here arises the true medium used did not participate waves propagate? when in fact the flow of water in a vast ocean. According to the flow of sea water was not caused by an wave but rather is caused by temperature differences in ocean water. But it may also occur displacement medium particles, when a wave through a medium gas substance that bonds between the particles is very weak then it is possible to move the position of the air particles due to exposure to wave energy. Although the particle displacement will not be much but it can be said that the medium particles involved move.

2.2 Types - kind of wave
In general, there are only two types of waves, namely, mechanical waves and electromagnetic waves.
Type based on the medium wave propagation is:
a.                          Mechanical wave, is a wave in the medium perambatannyamemerlukan, which channel the energy for the purposes of the propagation of a wave. Sound is an example of a mechanical wave that propagates through air pressure changes in a (tight-renggangnya air molecules).
b.                         Electromagnetic waves, the waves can propagate even though there is no medium. Energy electromagnetic waves propagating in a few characters that can be measured, namely: gelomban length, frequency, amplitude, and speed.
Examples elektronmagnetik waves in everyday life are as follows:
1. Radio waves
2. Microwaves
3. Infrared rays
4. Ultraviolet light
5. Visible light
6. X-rays and
7. Gamma rays
Type of wave propagation and vibrations in the direction, is divided into two, namely:
a.       Transverse waves, the waves knock the direction perpendicular to the direction of vibration. Examples of transverse waves are waves of rope. When we move the rope up and down, it appears that the rope moves up and down in a direction perpendicular to the direction of wave motion.
The highest point is called the wave peak, while the lowest point is called the valley. Amplitude is the maximum height or maximum depth of the valley, measured from the equilibrium position. The distance of two points in succession on the same wave is called wavelength (called lambda - the Greek letter). Wavelengths can also be considered as the distance from peak to peak or from valley to valley distance.
b.      Longitudinal waves, ie waves that knock direction parallel to the direction of vibration (eg wave slinki). Waves occur on a vibrated slinki, direction membujurnya slinki form density and strain. Distance of two density adjacent to two adjacent strain is called a wave.
While this type of wave by amplitude, divided into two, namely:
a.       Wave is a wave whose amplitude is fixed at a point in its path.
b.      Stationary wave is a wave whose amplitude is not fixed at a point in its path, which is formed from the interference of two waves coming and reflected that each have the same frequency and amplitude but opposite phase.

a.       Running Waves
The amplitude of the rope is vibrated continuously will always remain, therefore, the wave amplitude remains at all times is called a traveling wave.
Suppose we rope vibrate up and down over and over again as in Figure besides this. The point P is x dart point 0 (source profile), when the point 0 vibrate then the vibration is creeping up to the point P, the time taken by the waves to propagate from point O to point P is x / v so if the point 0 has been vibrating for t seconds then the point p has been vibrating for TP

tp= t- x/v

Based on the above, the deviation of the wave equation will be obtained as follows:
y=A sin 2π/T t

gambar:gel berjalan pada tali.jpg
Deviation equation at point P can be obtained by replacing t with tp value so we get the following relationship.
yp = A sin 2π/T (t- x/v)

A         = wave amplitude (m)
T          = wave period (s)
t           = length of the point 0 (source profile) vibrating (s)
x          = distance of point P from the vibration source (m)
v          = wave propagation speed (m / s)
yp        = deviation at a point P (m)
in this case the wave has two possibilities in the direction of knock, therefore, to consider the following steps:
·         If the wave propagates to the right and the origin 0 vibrated upward deviation of the point P, the equation used is:
yp = A sin2π/T (t- x/v)

·         If the wave propagates to the left and the origin 0 shaking down the deviation of the point P equation used is:
yp = - A sin 2π/T (t- x/v)
'
Phase is defined as the ratio between a moment to leave a balance point (point 0) and period. Thus dititik P wave phase can be written as follows:
Φ         = tp/T
= (t- x/v)/T                                            φ= t/T -  x/λ             
= t/T- x/vT

To produce:
Meanwhile, to measure the magnitude of the phase angle at point P can be written as
θp = 2π φ_p
     =2π (t/T- x/λ)
Phase difference between two points within X2 and X1 from vibration source can be written as follows:
Δφ  = ( x- x1)/λ
Δφ  =  ∆x/λ
Wave velocity and acceleration values ​​at a point can be determined by deriving equations both, as follows:
vp = 2π/T A cos 2π/T (t- x/v)
ap= - (4π2)/T2 A cos 2π/T (t- x/v)

Description:
vp = particle velocity at point p (m / s)
ap = acceleration of particles at the point p (m/s2)
a. Stationary waves
        It is a wave that has amplitude change - change from zero to a certain maximum value.
Stationary wave is divided into two stationary waves due to reflection at the end of the bound and stationary waves on the free end.
.
                     gambar:a.jpg                   gambar:b.jpg

A string whose length l we tie one end to the other end of the pole while we leave, we shake it setela free end was up and down over and over - again. When the rope in motion the waves travel from the free end tied towards the end, the wave is called the wave of dating. When the wave arrives dating tip that is bound then this will be reflected wave resulting wave interference.
        To calculate the time it takes the wave to propagate from point 0 to point P is (l-x) / v. while the time it takes the wave to travel from point 0 to point P after experiencing a wave of reflection is (l + x) / x, we can take the equation of the wave and the reflected wave dating as follows:
y1= A sin 2π/T (t- (l-x)/v) to wave,
y2= A sin 2π/T (t- (l+x)/v+ 1800) for the reflected wave
Description:
a. Pictures of wave reflection at the end of the rope that bound.
b. Pictures of wave reflection at the end of the rope to move freely.

so as to yield interference wave and reflected wave at point P a distance x from the end of the bound is as follows:

y  =  y1+ y2
    =A sin
2π (t/T- (l-x)/λ)+ A sin2π(t/T- (1+x)/λ+ 1800 )
By using the sine rule simplification of the formula becomes:
    sin
A + sin B = 2 sin 1/2 (A+B) - cos1/2  (A-B)

be :
y= 2 A sin (2π x/λ )  cos 2π  (t/T - l/λ)
y= 2 A sin
kx cos (2π/T t - 2πl/λ)
formula interference
y= 2 A sin kx cos (ωt- 2πl/λ)
Description:
A = amplitude of the reflected wave or (m)
k = / λ
ω = / T (rad / s)
l = length of rope (m)
x = location of the point of interference from the tip of bound (m)
λ = wavelength (m)
t = time instant (s)
Ap = the stationary wave amplitude (AP)
Ap = 2 A sin kx
If we look at the picture above wave reflection, wave is a transverse wave is formed that has a part - part of which the stomach and knot waves. Stomach wave occurs when the maximum amplitude occurs when the wave node, while the minimum amplitude. Thus we will be able to locate the point which is where the stomach or vertex waves.
Place node (S) from the end of the reflection
S=0,1/2 λ,λ,3/2 λ,2λ,dan seterusnya
  =n (1/2 λ),dengan n=0,1,2,3,….
Place the stomach (P) from the end of the reflection
P= 1/4 λ,3/4 λ,5/4 λ,7/4 λ,dan seterusnya
=(2n-1)[1/4 λ],dengan n=1,2,3,….
If there are two waves that propagate in the same medium, the waves will come at some point at the same time so there was a superposition of waves. That is, the deviation of the wave - the wave at each point can be added together to produce a new wave.
     Superposition of two wave equations can be derived as follows:

y= A sin
ωt ; y2 = A sin (ωt+ ∆θ) 
   
        These two waves have different phase angle of Δθ
Deviation equation wave superposition of two waves results are:
y = 2 A sin (ωt+ ∆θ/2) cos(∆θ/2) 

With 2A cos (Δθ / 2) is referred to as amplitude wave superposition results.
With 2A cos (Δθ / 2) is referred to as amplitude wave superposition results.
.

1. Stationary Waves In Free Edgegambar:gel.stasioner ujung bebas.jpg
At the end of the non-stationary wave reflected waves do not undergo phase reversal. Wave equation at point P can be written as follows:
y1 = A sin
/ T (t-(lx) / v) to wave
y2 = A sin
/ T (t-(l + x) / v) for the reflected wave
y   =  y1 + y2
     =   A sin
2π/T (t- (l-x)/v) + A sin 2π/T  (t- (l+x)/v)
  y =   2 A cos
kx sin2π(t/T- 1/λ)

Formula interference between the incident wave and the reflected wave at the free end, is::
y=2 A cos 2π (x/λ) sin2π(t/T- l/λ) 
by :
As = 2A cos (x / λ) is called a superposition of wave amplitude on reflection-free end of the rope.

Ap = 2 A cos kx is the amplitude of the stationary wave.
1) Stomach wave occurs when the maximum amplitude, which mathematically can be written as follows:

     
Ap maximum current cos⁡〖(2π  x)/( λ)= ±1 so
    X = (2n) 1/4 λ,with
     n = 0,1,2,3,…….
.
2) Node wave occurs when the minimum wave amplitude, is written as follows::
Ap minimum current
 cos⁡〖(2π x)/( λ)=0 so
x= (2n +1) 1/4 λ,
with
n = 0,1,2,3,……..

1. Stationary wave at the ends tied gambar:stasioner ujung terikat.jpg
Wave equation and reflected waves can be written as follows:
y1 = A sin
(t/T- (lx) / λ) for the wave
y2 = A sin
(t/T- (l + x) / λ) for the reflected wave
'
Superposition of the incident wave and the reflected wave at the point q will be:
y = y1 + y2
y = A sin
(t/T- (lx) / λ) - A sin (t / (T) - (l + x) / λ)

Using reduction rules sinus,
sin
α - sin β = 2 sin 1/2 (α-β) cos 1/2 (α + β)

Superposisinya wave equation becomes
y = 2 A sin
(x / λ) cos (t/T- l / λ)
The amplitude of the wave superposition are:
As = 2A sin
(x / λ)
As is the amplitude of the wave with the superposition of the reflection ends tied.
1) Stomach wave occurs when the maximum amplitude,
therefore be determined by the following formula:
Ap = 2 A sin
/ λ x
Ap maximum occurs when sin
/ λ x = ± 1 so that
                                                      x = (2n +1) 1/4 λ, with n = 0,1,2,3 .......

2) Node wave amplitude occurs at minimum,
    which can be written as follows:
   Ap = 2 A sin
(/ λ) x
   Ap minimum occurs when sin
/ λ x = 0 so
                                                         x = (2n) 1/4 λ, with n = 0,1,2,3, .....

a. Stationary Waves on Strings
To determine the speed of propagation of the wave on the string, Melde experimenting with using a tool like the picture below
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image2.jpg
Figure 1.13 Experiment Melde
From the experimental results Melde got a conclusion as follows.
a) For a fixed length string then kcepatan wave propagation is inversely proportional to the mass of strings.
b) To keep the string mass, wave propagation speed is proportional to the root length strings.
c) Fast wave propagation in the string is proportional to the root of the string tension.
The equation can be written as follows.
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image3.jpg
with
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image4.jpg
referred to as the mass per unit length of the wire, then, the equation becomes:
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image5.jpg
with F in newtons (N) and μ in kg / m. Thus, the speed of propagation of the wave on the string is proportional to the root of the tension wire and inversely proportional to the root of the mass per unit length of wire.

The resulting vibration of the guitar, violin, or harp is a string vibrations. This was investigated by Mersene by showing the following equation.

a) First Harmonic Tones or
If a string is vibrated and form a pattern as shown below. Strings will produce harmonic tones or called first
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image7.jpg
Figure 6.13 Base notes or first harmonic tones.
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image8.jpg
so the frequency becomes
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image9.jpg
b) tone on the first or second harmonic
The following picture string vibration pattern will result in the first tone, also known as second harmonic with l = λ and f = 2f first harmonic so that the frequency
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image10.jpg
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image11.jpg
Figure 1.14 The tone on the first or second harmonic tone.
c) The tone on the first two
String vibration patterns in the image below called the yield on the second pitch
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image12.jpg
so the frequency becomes
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image13.jpg
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image14.jpg
Figure 1.14 The tone on the second or third harmonic tone.
Thus, the comparison between the frequency of the tones in the strings are as follows
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image15.jpg
Comparison of these frequencies are integers. It is well known wave propagation velocity in the string is v = F / μ then
a) frequency tones
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image16.jpg
b) the frequency of the tone on the first
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image17.jpg
c) the frequency of the second tone:
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image18.jpg
In general, the frequency of a string equation becomes:
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image19.jpg
with n = 0, 1, 2, 3, ...
a. Stationary waves at Pipe Organa
If we look at musical instruments such as flute, trumpet, clarinet, and so the vibration of air molecules in a column of air can be a source of sound. The simplest air column that is used as a musical instrument is the pipe organ. Pipe organ there are two kinds of organ pipes open and closed organ pipes.
1. Organa Pipe Open
Open organ pipe is a column of air or tubes that both these open ends. Both ends into the stomach (non-moving) in the middle node.
(1) Base notes
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image20.jpg
Wave as shown below produces the basic tone with a frequency
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image21.jpg
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image22.jpg
Figure 1.16 Base notes or first harmonic tones.
(2) Top notes first: l = λ
Wave as shown below produces the first overtone with frequency:
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image23.jpg
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image24.jpg
Gambar 1.17 Nada atas pertama atau nada harmonik kedua.
(3) Nada atas kedua:
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image25.jpg
Pola gelombang seperti berikut menghasilkan nada atas kedua dengan frekuensi:
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image26.jpg
Figure 1:18 The tone on the second or third harmonic tone.
Thus, the comparison between the frequency of the tones in an open organ pipe, namely:
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image27.jpg
In general, the form of the harmonic frequency of an open organ pipe can be written as the following equation.
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image28.jpg
with n = 0, 1, 2, 3, ...
Comparison of frequency tones in an open organ pipe is a ratio of integers.
Organ pipe closed
Closed organ pipe is a column of air or tube one end closed (a node because it is not free to move) and the other end open (into the stomach).
(1) Base notes:
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image29.jpg
Wave as shown below produces tones with frequencies
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image30.jpg
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image31.jpg
Figure 1.19 Base notes or first harmonic tones.
(2) Top notes first:
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image32.jpg
Wave as shown below produces the first overtone with frequency:

http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image33.jpg
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image34.jpg
Figure 1.20 The tone on the first or second harmonic tone.
(3) The tone of both:
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image35.jpg
Wave pattern as shown below produces the tone of both the frequency:http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image36.jpg
Thus, for the value of the same wave propagation velocity will the comparison between the frequency of the tones on the organ pipe closed, iehttp://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image37.jpg
So, you will get a comparison of the frequency of harmonics is an odd number with f0: f1: f2 = 1: 3: 5 Comparison of the frequency of the tones in a closed organ pipe is a comparison of odd numbers. In general, the form of the harmonic frequency of the organ pipe closed equation can be written
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image38.jpg
with n = 0, 1, 2, 3, ...
Pelayangan Sound
Pelayangan is the event of strengthening sound vibrations in turn caused the two adjacent frequency noise source at a point (the listener). Terms pelayangan the frequency of the sound source is almost the same.
            By :  frequency pelayangan
                            frequency of the first sound                                                                                           frequency of the first sound
a.      Efek Doppler 
Doppler Effect
If sumberbunyi silent for too silent observer, the frequency heard by the observer at a frequency power radiated by the sound source. Frequency heard by the observer would be different if there is relative motion between the sound source and the observer.
            For the case of moving sound source and stationary observer, the frequency heard by the observer can be formulated as follows.
fp= v/(v±vs ) fs
With
fs = frequency sound source (Hz)
fp = frequency heard by the observer (Hz)
v = speed of sound in air (in general, v by 340 ms-1)
v = speed of sound sources (ms-1)
When using Equation (3-16), note (+) sign is used when the sound source away from the observer, while the sign (-) when the sound source approaches the observer. In this case, an observer at rest or not moving
1. Silent sound source and observer moving

      If the observer is moving and stationary sound source, the frequency heard by the observer different from the frequency of the emitted sound source. Frequency sounds can be formulated as follows:

fp= [(v ± vp)/v] fp ................. Persamaan 3-2
     In the above equation, the sign (+) is used when the observer moves closer p s the sound source and the sign (-) is used when the observer is moving away from the sound source p s. In this case, the source of the sound s silent,
or does not move.

2. The sound source and the observer moves
By using equations 3-1 and 3-2, is obtained:
If the observer stationary and stationary noise sources, fp = fs;
If either of the observer or the source of the sound approached, fp> fs;
If either of the observer or away from the sound source, fp <fs;
In general, the Doppler effect equations for sound's source and observer p (two moves) is

By:
f = frequency heard by the observer s, + vp → fp> fs
fs = frequency of the sound source (Hz)
v = velocity of sound in air (ms-1)

v = velocity of the sound source (ms-1)
vp = velocity of the observer (ms-1)

how to determine the sign (+) and minus sign (-), are as follows:
When p moves closer s, + vp → fp> fs
When p moves away from s,-vp → fp <fs
If it's moving closer to p, v → fp-> fs
If s is moving away from p, + v → fp <fs
If the s and p equal - equally silent, vs = 0 and vp = 0 → fp = fs.

3. Application of the Doppler effect as the radar
The Doppler effect can be applied as a radar to determine the speed of a vehicle on the highway.
A police car is equipped with a transmitter and receiver noise.
Sound waves are emitted with velocity v and frequency fs to a passenger car moving with velocity vs. Once the passenger car, the wave will be reflected back to the police car, Bell will receive the reflected wave with frequency fp of the event so that it will apply the Doppler Effect equation,
fp= (v+vp)/(v-v ) fs
2.3 Sifat-sifat fisis gelombang meliputi:
1.      Pemantulan gelombang, adalah pembelokan arah rambat gelombang karena mengenai bisang batas medium yang berbeda. Gelombang pantul memiliki arah yang berlawanan dengan gelombang datang namun mesih berada pada medium yang sama.
2.      Pembiasan gelombang, adalah pembelokan arah rambat gelombang dari daerah dakam ke daerah dangkal. Pada peristiwa pembiasan frekuensi gelombang selalu tetap, tapi panjang gelombang dan cepat rambatnya mengalami perubahan.
3.      Polarisasi gelombang, adalah perubahan arah rambat gelombang setelah melewati medium polaroid. Polarisasi hanya dapat terjadi pada gelombang transversal. Cahaya tak terpolarisasi adalah cahaya murni yang getarannya ke segala arah. Cahaya mengalami polarisasi linear ketika cahaya melewati polaroid menyebabkan arah perambatan selalu sama.
4.      Dispersi gelombang, adalah perubahan bentuk gelombang ketika gelombang merambat melalui suatu medium. Contoh yaitu terurainya gelombang cahaya putih (polikromatis) menjadi warna-warna pelangi ketika melalui prisma kaca. Gelombang yang dapat mempertahankan bentuknya dalam medium non dispersi disebut gelombang nondispersi. Contoh medium nondispersi adalah udara.
5.      Difraksi gelombang, adalah penyebaran arah rambat gelombang ketika melewati celah yang sempit. Ketika gelombang masuk ke celah yang sempit, maka tiap titik pada celah berperan sebagai sumber gelombang baru dengan arah rambat radial.
6.      Interferensi gelombang, adalah pengaruh yang ditimbulkan oleh gelombang hasil superposisi. Jika kedua gelombang yang dipadu memiliki fase yang sama, maka akan dihasilkan gelombang yang saling memperkuat (interferensi konstruktif). Jika gelombang yang dipadu memiliki fase yang berlawanan, maka akan dihasilkan gelombang yang saling melemahkan (interferensi destruktif).

2.4  Contoh Penerapan Gelombang dan Gelombang Bunyi dalam Kehidupan Sehari-hari :
1.      Radio
Radio energi adalah bentuk level energi elektromagnetik terendah, dengan kisaran panjang gelombang dari ribuan kilometer sampai kurang dari satu meter. Penggunaan paling banyak adalah komunikasi, untuk meneliti luar angkasa dan sistem radar. Radar berguna untuk mempelajari pola cuaca, badai, membuat peta 3D permukaan bumi, mengukur curah hujan, pergerakan es di daerah kutub dan memonitor lingkungan. Panjang gelombang radar berkisar antara 0.8 – 100 cm.
2.      Microwave
Panjang gelombang radiasi microwave berkisar antara 0.3 – 300 cm. Penggunaannya terutama dalam bidang komunikasi dan pengiriman informasi melalui ruang terbuka, memasak, dan sistem PJ aktif. Pada sistem PJ aktif, pulsa microwave ditembakkan kepada sebuah target dan refleksinya diukur untuk mempelajari karakteristik target. Sebagai contoh aplikasi adalah Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager (TMI), yang mengukur radiasi microwave yang dipancarkan dari Spektrum elektromagnetik Energi elektromagnetik atmosfer bumi untuk mengukur penguapan, kandungan air di awan dan intensitas hujan.
3.      Infrared
Kondisi-kondisi kesehatan dapat didiagnosis dengan menyelidiki pancaran inframerah dari tubuh. Foto inframerah khusus disebut termogram digunakan untuk mendeteksi masalah sirkulasi darah, radang sendi dan kanker. Radiasi inframerah dapat juga digunakan dalam alarm pencuri. Seorang pencuri tanpa sepengetahuannya akan menghalangi sinar dan menyembunyikan alarm. Remote control berkomunikasi dengan TV melalui radiasi sinar inframerah yang dihasilkan oleh LED ( Light Emiting Diode ) yang terdapat dalam unit, sehingga kita dapat menyalakan TV dari jarak jauh dengan menggunakan remote control.

4.      Ultraviolet
Sinar UV diperlukan dalam asimilasi tumbuhan dan dapat membunuh kuman-kuman penyakit kulit.
5.      Sinar X
Sinar X ini biasa digunakan dalam bidang kedokteran untuk memotret kedudukan tulang dalam badan terutama untuk menentukan tulang yang patah. Akan tetapi penggunaan sinar X harus hati-hati sebab jaringan sel-sel manusia dapat rusak akibat penggunaan sinar X yang terlalu lama.
6.      Alat musik
Pada alat musik seperti gitar sumber bunyinya dihasilkan oleh benda yang bergetar, yaitu senar. Jika senar dipetik dengan amplitodu (simpangan) yang besar maka bunyi yang ditimbulkan akan lebih keras. Dan jika ketegangan senar di diregangkan maka suara lengkingannya akan semakin tinggi. Begitu pula pada kendang dan alat musik yang lain. Suara timbul karena sumber suara digetarkan.
7.     kacamata tunanetra, dilengkapi dengan alat pengirim dan penerima ultrasonik memanfaatkan pengiriman dan penerimaan ultrasonik. Perhatikan bentuk kaca tuna netra pada gambar berikut.
8.      Mengukur kedalaman laut, untuk menentukan kedalaman laut (d) jika diketahui cepat rambat bunyi (v) dan selang waktu (t), pengiriman dan penerimaan pulsa adalah :


9.      Alat kedokteran, misalnya pada pemeriksaan USG (ultrasonografi). Sebagai contoh, scaning ultrasonic dilakukan dengan menggerak-gerakan probe di sekitar kulit perut ibu yang hamil akan menampilkan gambar sebuah janin di layar monitor. Dengan mengamati gambar janin, dokter dapat memonitor pertumbuhan, perkembangan, dan kesehatan janin. Tidak seperti pemeriksaan dengan sinar X, pemeriksaan ultrasonik adalah aman (tak berisiko), baik bagi ibu maupun janinnya karena pemerikasaan atau pengujian dengan ultrasonic tidak merusak material yang dilewati, maka disebutlah pengujian ultrasonic adalah pengujian tak merusak (non destructive testing, disingkat NDT). Tehnik scanning ultrasonic juga digunakan untuk memeriksa hati (apakah ada indikasi kanker hati atau tidak) dan otak. Pembuatan perangkat ultrasound untuk menghilangkan jaringan otak yang rusak tanpa harus melakukan operasi bedah otak. “Dengan cara ini, pasien tidak perlu menjalani pembedahan otak yang berisiko tinggi. Penghilangan jaringan otak yang rusak bisa dilakukan tanpa harus memotong dan menjahit kulit kepala atau sampai melubangi tengkorak kepala.




CHAPTER III
COVER
3.1 CONLUSION
1.      Gelombang didefinisikan sebagai energi getaran yang merambat. Dalam kehidupan sehari-hari banyak orang berfikir bahwa yang merambat dalam gelombang adalah getarannya atau partikelnya, hal ini sedikit tidak benar karena yang merambat dalam gelombang adalah energi yang dipunyai getaran tersebut.
2.      Jenis-Jenis Gelombang
a.       Gelombang berdasarkan  mediumnya dibedakan menjadi 2 macam yaitu
1. Gelombang mekanik
2. Gelombang elektromagnetik
b.  Gelombang berdasarkan arah rambatnya dibedakan menjadi 2 macam, yaitu :
1. Gelombang Longitudinal
2. Gelombang Transversal
c. Gelombang berdasarkan amplitudonya, dibagi menjadi dua yaitu :
1.      Gelombang berjalan
2.      Gelombang stasioner
a.       Gelombang Berjalan
yp = A sin 2π/T (t- x/v)
b.      Gelombang Stasioner 
Ø  Gelombang Stasioner Pada Ujung Bebas
y=2 A cos 2π (x/λ) sin2π(t/T- l/λ) 
Ø  Gelombang stasioner pada ujung terikat
y = 2 A sin 2π(x/λ) cos2π (t/T- l/λ) 
c.       Gelombang Stasioner pada Dawai
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image5.jpg
d.      Gelombang Stasioner pada Pipa Organa
Ø  Pipa Organa Terbuka
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image20.jpg
Ø  Pipa Organa Tertutup
http://www.sman10garut.sch.id/wp-content/uploads/media/gelombang-stasioner/image29.jpg
e.       Pelayangan Bunyi
f.       Efek Doppler 
fp= v/(v±vs ) fs
Ø  Sumber Bunyi Diam dan Pengamat Bergerak
fp= [(v ± vp)/v] fp
Ø  Aplikasi efek Doppler sebagai radar
fp= (v+vp)/(v-v ) fs

rumus gelombang berjalan diatas, hanya salah satu  bentuk rumus, kita bisa memvariasikan menjadi bentuk rumus yang lain. Saran saya pahami rumus yang satu di atas, dan wajib hapal rumus-rumus sponsor/ pendukung berikut:
1.      v  =   λ f    dan f = 1/T
2.      http://fisika79.files.wordpress.com/2010/07/image014.gif?w=500danhttp://fisika79.files.wordpress.com/2010/07/image016.gif?w=500
3.      http://fisika79.files.wordpress.com/2010/07/image017.png?w=500
4.      Sudut fase : besar sudut dalam fungsi sinus (dinyatakan dalam radian)
http://fisika79.files.wordpress.com/2010/07/image019.png?w=500
Fase gelombang
http://fisika79.files.wordpress.com/2010/07/image021.png?w=500
Beda fase antara titik B dan A

3.      Sifat-sifat fisis gelombang meliputi:
1.      Pemantulan gelombang,
2.      Pembiasan gelombang,
3.      Polarisasi gelombang,
4.      Dispersi gelombang,
5.      Difraksi gelombang,
6.      Interferensi gelombang
4.      Contoh Penerapan Gelombang dan Gelombang Bunyi dalam Kehidupan Sehari-hari :
1.      Radio
2.      Microwave
3.      Infrared
4.      Ultraviolet
5.      Sinar X
6.      Alat musik
7.     kacamata tunanetra
8.      Mengukur kedalaman laut
9.      Alat kedokteran,
3.2 SUGGESTION
1. untuk pembaca diharapkan dapat menambah wawasan, memberikan kritik dan saran.
2. untuk pembaca diharapkan dapat menerapkan pemanfaatan gelombang dalam kehidupan sehari -  hari.
3. untuk institusi atau lembaga pendidikan diharapkan dapat memberikan suatu pembelajaran tentang gelombang  terhadap peserta didik.



BIBLIOGRAPHY



0 komentar:

Posting Komentar